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A Versatile Architecture for the Distributed 
Sensor Integration Problem 
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Abstract-The computational issues related to information in- 
tegration in multisensor systems and distributed sensor networks 
has become an active area of research. From a computational 
viewpoint, the efficient extraction of information from noisy and 
faulty signals emanating from many sensors requires the solution 
of problems related a) to the architecture and fault tolerance of 
the distributed sensor network, b) to the proper synchronization 
of sensor signals, and c) to the integration of information to 
keep the communication and the centralized processing require- 
ments small. In this paper, we propose a versatile architecture 
for a distributed sensor network which consists of a multilevel 
network with the nodes (processing elementlsensor pairs) at 
each level interconnected as a deBruijn network. We show that 
this multilevel network has reasonable fault tolerance, admits 
simple and decentralized routing, and offers easy extensibility. 
We model information from sensors as real valued intervals and 
derive an interesting property related to information integration 
in the presence of faults. Using this property, the search for 
a fault is narrowed down to two potentially faulty sensors or 
communication links. In a distributed environment, information 
has to be integrated from “temporally close” signals in the 
presence of imperfect clocks in a distributed environment. We 
apply the results of past research in this area to state various 
relationships between the clocks of the processing elements in the 
network for proper information integration. 

Index Terms- Abstract estimate, clock synchronization, dis- 
tributed sensor networks, deBruijn networks, fault tolerance, 
information integration. 

I. INTRODUCTION 
N RECENT YEARS, there has been increasing interest in I the development of distributed sensor networks (DSN’s) for 

information gathering. This is partly because of the availability 
of new technology which makes the DSN’s economically 
feasible to implement and the increasing complexity of today’s 
information gathering tasks to which they are applied. These 
tasks are usually time-critical and rely on the reliable delivery 
of accurate information for their completion. To meet these 
requirements, a DSN must be able to dynamically respond 
to fault conditions, reconfiguring its activities as necessary to 
compensate for disturbances. Thus, the search for efficient, 
fault-tolerant architectures for DSN’s has become an important 
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area in research. A DSN consists of a set of sensors, a set 
of processing elements (PE’s), and a communication network 
interconnecting the various PE’s. One or more sensors is 
associated with each PE. We refer to the PE and its associated 
sensor(s) as a node. 

The integration of multiple, disparate sensors into a useful 
sensor network involves the solution of several different 
problems. For an excellent discussion of the problems and the 
current state of the art in multisensor integration, the reader 
is referred to the survey paper by Luo and Kay [9]. From a 
computational viewpoint, however, the efficient extraction of 
information from noisy and possibly faulty signals emanating 
from many sensors requires the solution of problems relating 
1)  to the architecture and the fault tolerance of the distributed 
sensor network, 2) to the proper synchronization of sensor 
signals, and 3) to the integration of information to keep the 
communication and the processing requirements small. 

Wesson et al. [2] were the first to attempt designing efficient 
networks for distributed sensing. They proposed the hierar- 
chical and committee interconnection topologies. A sensor 
network based on a fixed number of complete binary trees 
fully interconnected at their roots (we will refer to this network 
as a flat tree network) was considered in [ l l ] ,  [12] and the 
following issues were studied: 

1 )  the integration of information in real time when clocks 

2 )  the transmission of information without incurring heavy 

3) the fault tolerance of the network to certain types of 

at the nodes are not perfect, 

communication costs, and 

faults. 

A.  Scope of the Paper 

In this paper, which is a continuation of research reported 
in [ 1 I], [ 121, we propose a new versatile architecture based on 
the deBruijn network, (first proposed by Pradhan [3]) ,  which 
has several advantages over the flat tree network. Specifically, 
the proposed network has better fault-tolerant properties and 
supports more nodes than the latter with the same diameter. 
We show how information integration could be achieved in 
this network and derive an interesting property related to such 
integration in the presence of faults. 

This paper is organized as follows. Section I-B has a brief 
overview of sensor integration. The notations and definitions 
used in the paper are presented in Section I-C. After motivating 
the need for a new sensor network in Section 11-A, we propose 
a multilevel network with each level having the deBruijn 
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interconnection in Section 11-B. Algorithms for routing in this 
network are described in Section TI-C. We describe sensor 
integration in the presence of faults in Section 11-D. The fault 
tolerant properties of the network are the subject of Section 
111. In a DSN, it is necessary that the clocks on the nodes 
be synchronized. A variant of a previously known method for 
synchronizing clocks is described for the network in Section 
111. In Section IV, we compare topological, routing and fault- 
tolerant properties of the proposed DSN with other sensor 
networks. We conclude the paper by highlighting the features 
of the proposed network and indicate the future directions this 
area of research could possibly take. 

B. An Overview of Sensor Integration 

The PE’s of a DSN combine the sensor output readings 
to derive an accurate value of the physical process that the 
sensors monitor. This process of combining the sensor outputs 
is called information integration or data fusion. 

The method used to integrate the information passed by the 
sensors depends on whether the sensors provide competitive 
information or complementary information. In the former 
case, each sensor ideally provides identical information. This 
redundancy of the sensor readings helps in enhancing the 
reliability and fault tolerance of the network. Also, noise in 
the signals can be detected and removed. This is because the 
noise in different sensor signals tend to be uncorrelated while 
the signals of interest are correlated. It is therefore necessary 
for the information from the sensors to be combined in a 
meaningful and effective manner, so that the result is fairly 
accurate. Complementary information integration is done when 
only partial information is available from each sensor; such 
information is then integrated to obtain the result. 

Following Marzullo [lo], we distinguish between a cuncrete 
sensor and an abstract sensor. A concrete sensor is a device 
that can be used to sample a physical state variable. An abstract 
sensor is a piecewise continuous function from a physical 
state variable to a dense interval of real numbers. The reasons 
for using an abstract sensor rather than a concrete sensor are 
detailed in [IO], [ 111. Determining the function which maps 
a concrete sensor to an abstract sensor depends on many 
factors such as the choice of a particular sensor type (e.g., 
motion detecting sensor, range finding sensor, vision sensor), 
the compensation that has to be applied to the raw sensor 
value which is itself dependent on the local values of certain 
parameters (e.g., design parameters of the sensor), the nature 
of the application, etc. For instance, if a sensor reads a value to 
be S and its maximum error is known to be E ,  then an abstract 
sensor, albeit simple, could be the interval ( S  - E ,  S + E) .  A 
PE at a node converts a concrete sensor to an abstract sensor. 
The abstract sensors are combined or integrated to form an 
abstract estimate. The particular method of combining depends 
on the integration algorithm used. To keep the terminology 
simple, we refer to the abstract sensor as the abstract estimate 
also. An abstract estimate could, in turn, be combined with one 
or more abstract estimates to form a new abstract estimate. 

Marzullo [lo] considers the case of a processor receiving 
input from several sensors whose outputs are intervals. He 

Fig. 1. Integrating six intervals with three incorrect. 

gives a fault tolerant integration algorithm which takes as 
input the intervals representing the sensors and gives as output 
an interval which always contains the actual physical value. 
A correct sensur is one whose interval contains the actual 
physical value. Hence, any two correct sensors must intersect 
since they both contain the physical value being measured. 

Marzullo considers the case when at most f ( f  < n) sensors 
are faulty in a n-sensor network. The physical value would 
then be contained in any of the (n  - f )  intersecting intervals. 
Since it is not possible to decide which intersection contains 
the physical value, the smallest connecting interval containing 
all the (n - f )  intersections is taken to be the output of the 
processor. It can be seen that this final estimate contains the 
actual physical value. The final estimate, however, becomes 
arbitrarily wide as the number of faulty sensors becomes large. 
In such cases, an integration method described in [ 121 reduces 
the width of the final abstract estimate. For simplicity, we 
will use Marzullo’s model for information integration in the 
proposed network. Fig. 1 illustrates Marzullo’s method for 
integrating six intervals of which three are incorrect (i.e., 
n = 6,  f = 3). 

In this paper, we concentrate on competitive information 
integration. The architecture described here could be used 
effectively for complementary information integration in the 
presence of noise and possibly faulty sensors. 

C. Notations and Dejinitions 

We model the DSN by an undirected graph G = (V, E) ,  
where each node represents one or more sensors and an 
associated PE of the network, and each edge represents a 
communication link of the network. The length of a path 
between two nodes is the number of edges encountered while 
going from one node to another. The distance between two 
nodes is the shortest length between the nodes. The diameter 
of the network is the largest distance between any two nodes 
in the network. The degree of a node is the number of edges 
associated with that node. The degree of the network is the 
largest degree of any node in the network. 

Let yf represents a binary number with bit y repeated f 
times; 3 represents the complement of y, and x represents the 
don’t care bit. For example, the binary number OOOllxx is 
represented by 0312x2. A node i in a network with N = 2k 
nodes has the binary address ik-Iik-2.. .ilia where i k - l ( z 0 )  

is the most (least) significant bit. The following definitions 
describe two address transforming functions append (app) and 
strip (str). 
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Let M be a k-bit number. Then 

1 I 1  

For example, app(000, 1) = 0001 and str(O010) = 001. Note 
that stl-(app(M. y))  = M .  

Our interest lies in multi-level networks (MLNs) in which 
each node of the network can be associated with a level 
number. An 1-level network has 1 levels numbered from 0 to 
1 - 1. The set of nodes at level m to which a node i at level r n  
is connected form the neighbors of i .  The set of nodes to which 
i is connected at level 7 n  - 1 form the parents of i. The set of 
nodes to which i is connected at level wi + 1 form the children 
of ,i. In the MLN that we consider for the proposed DSN, there 
is a single node called the root at level 0, and each node at 
a higher level number has at most one parent and at most 
children. We refer to such a network as a r-ary MLN. The node 
i at level m > 0 has the address im-li,_p...i180, where 
each digit ij E (0. 1:'. , T  - 1) (0 5 j < r n ) .  This node 
i is connected to at most r children nodes whose addresses 
are app( i .  0): a p p ( i ,  l), . . . . app(i. T - l), and to its parent 
node whose address is str( i ) .  For every node i at level m, the 
relation Qm(i )  yields the set of nodes to which i is connected 
at level rn. In the network proposed, all but the Oth level of the 
network have the same interconnection scheme at each level. 

Hence two nodes i and , j  in this network are connected iff 
I )  j = upp( i> b ) ,  or 
2) j = str(i) ,  or 
3) j = @ ( i )  

where b E (0, l : . . . , r  - l}. 
A real interval R = (Rl> Ru) is represented by a pair of real 

numbers; Rl is called the lower bound and R, is called the 
upper bound of the interval R. We shall refer to real intervals 
simply as intervals. 

The width of the interval, IRl, equals ( R ,  - I&). The ser 
theoretic intersection of two intervals, X and 1' is defined as 

X nY = (c  I c E X and c E Y } .  

Correspondingly, two intervals are said to intersect (or 
overlap) if their set theoretic intersection is non empty. 
Hence, if the set theoretic intersection of X and Y is 
non empty then their interval intersection is the interval 
(maz (X l ,  x). min(X, ,  Yu)).  A special case of interval 
intersection is interval inclusion. X includes Y if Xl < Yl 
and X u  > Y,. The span of two intervals X and Y is defined as 

X U Y  = ( X l .  Yu) .  

Note that the span operation between two nonoverlapping 
intervals may result in an interval that includes points not 
lying in either of the intervals. 

Intervals X and Y are said to be non distinct if either X 
includes Y or Y includes X ;  otherwise, X and Y are said 
to be distinct. 

d b  
Fig. 2. A flat tree network with 12 nodes. 

11. ARCHITECTURE OF THE DISTRIBUTED SENSOR NETWORK 

This section describes the architectural features of the 
proposed network. We provide the motivation for this archi- 
tecture by reviewing the past work of other researchers and 
pointing out the shortcomings of their approaches. In the next 
subsection, we list desirable features of a DSN and later show 
how the proposed network provides many of these features. 

A. Motivation for  a New Architecture 

Wesson et ai. 121 have described two architectures for a 
DSN. The first is the hierarchical or tree organization and 
the second is the committee organization whose nodes can 
send messages to one, some, or all nodes in the network. 
The hierarchical network has several advantages like constant 
node degree and easy extensibility. It is not a good choice 
for a DSN, however, because a faulty node can disconnect an 
entire subtree. The committee organization does not have this 
disadvantage but is expensive and is not easily extensible. 

It is clear from the above observations that both the commit- 
tee organization and the tree organization have disadvantages; 
a combination that uses the merits of both the types of 
architectures is hence desirable. The flat tree network, referred 
to earlier, incorporates some of the merits of both these 
organizations. The nodes in this network are organized as 
many complete binary trees, the roots of which are completely 
connected. Fig. 2 shows a flat tree network with 12 nodes. It 
has some disadvantages, however. For example, integration 
errors o f  the lower nodes accumulate as the information goes 
up the hierarchy. One way to overcome this problem is to 
interconnect nodes in the lower levels of this network. 

This motivates our proposal for a class of networks which 
have a committee organization at each level and an overall 
hierarchical organization. The versatility of neworks with this 
organization arises from the fact that several topologies could 
be considered to interconnect nodes at each level. The neworks 
that we propose consists of the flat tree with nodes at each 
level interconnected as a deBruijn graph. We will show that 
this class of networks has several advantages such as 

1)  they allow the construction of large networks with 
bounded degree, 

2 )  their diameter of these networks grows only logarithmi- 
cally with the the number of nodes, 

3) they admit simple routing schemes, and 
4) they possess fault tolerant capabilities. 
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Fig. 3. DG (2, 3). 
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B. The Proposed Architecture 

The proposed DSN is a modified I-level MLN with the top 
level completely connected and with each of the other levels 
interconnected as a deBruijn network. The versatility of this 
organization arised from the fact that several interconnection 
topologies could be considered to interconnect nodes. Before 
describing the proposed architecture for DSN, we briefly 
review the evolution of the deBruijn network and mention 
its important features. 

The use of deBruijn networks as interconnection topologies 
for fault-tolerant parallel and distributed architectures was first 
proposed by Pradhan [3], who also proposed fault tolerant 
VLSI architectures based on this network [5], [13]. Recently, 
deBruijn networks have gained significant practical importance 
with the on-going implementation of a 8096 PE deBruijn 
architecture by JPL for the Galileo project, scheduled for 
completion by 1995 [13]. 

An important feature of the deBruijn network is that it can 
be configured as many useful computational networks in spite 
of faults. In addition, deBruijn networks have 

1) a small diameter 
2) admit simple routing, and 
3) possess good fault tolerant capabilities. 
For a detailed discussion on the aforementioned features of 

deBruijn networks, see the paper by Samantham and Pradhan 
@I. 

Using graph theoretic notation, the undirected deBruijn 
network DG(d, k) has N = dk nodes with diameter k and 
degree 2d. We are interested in binary deBruijn networks 
DG(2, k )  which have N = 2k.  A node i of the network 
with the binary address a k - l U k - 2 . .  . ala0 has neighbors: 

a k - Z a k - 3  ' .  ' alaOak-1 (il) 

04) 

The address of neighbors i l  and 23 is obtained by the 
left shift-end-around operation and the right shift-end-around 
operation on 2 respectively-they are called the L R  and the 
R R  neighbors of i. The address of nodes a2 and i4 is obtained 
by complementing the rightmost bit of il and the leftmost bit 
of 23 respectively-they are correspondingly called the LRC 
and the RRC neighbors of i. Fig. 3 shows an eight-node binary 
deBruijn network with the nodes named with the convention 
just described. 

- 
aoak-lak-2.. . a2a1. 

- 
01 1 

101 

level 2 

level 3 

111 

Fig. 4. MBD with two layers. 

The proposed DSN is organized as follows: 
1) The nodes in the topmost level are called comman- 

der nodes. There are four commander nodes that are 
completely connected. 

2) The nodes in each of the underlying levels are intercon- 
nected as a binary deBruijn network ( I  - 1). 

3) Each node X ,  at level m in the network is connected to 
two children nodes app(X, 1) and app(X, 0) at level 
m + l (m < Z - 1) and is connected to its parent node 
str (X) at level m - 1. 

Henceforth we shall refer to the proposed network as the 
multi-level binary deBruijn network (MBD). Since the topmost 
level of the MBD contains 22 nodes, it is convenient to assign 
it level 2. Hence, an Z-level MBD has Z levels numbered 
from 2 through 1 + 1. Fig. 4 shows a 2-level MBD-the 
inter-level connections are shown by dashed lines and the 
intra-level connections by solid lines. Each node of the MBD 
has a PE, a clock which maintains real time, an associated 
sensor which samples the physical variable(s) of interest, and 
an associated buffer. The PE translates the sensor reading into 
an abstract estimate, time stamps the estimate with the current 
time, and places the abstract estimate in the associated buffer. 
There is also a buffer associated with each link. The PE's 
connected to the link have access to this buffer. Fig. 5 shows 
the architectural details of a node of the MBD. (Note: With 
slight modifications, we could allow for multiple sensors at 
each node.) 

Topological Properties: The following lemmas describe the 
topological properties of the MBD. 

Lemma I: The number of nodes in MBD with I levels is 
4(2' - 1). 

Proof: The number of nodes at level m(2 < m 5 I + l), 
n,,, = 2 x nm-l; 722 = 4 

Solving this equation yields the total number of nodes as 

N = 4(2L - 1) (1) 

Lemma 2: The MBD with L levels has degree 7 and 
diameter L + 1. 

Proof: The nodes at the top and bottom levels have 
degree at most 5. Now, consider an internal node in the 
network. This node is in a deBruijn network and hence has 
at most 4 neighbors. The same node is also connected to 
its 2 children nodes and a parent node. Hence a node in the 
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Destination Routing T~~ 

IRB i % Z s  Address Counter 

To parent 

/ I To neiqhbors 

From neighbors 

61 - Buffer for sensor output 
82 63 - Buffers for AE from 

children 
64-67 . Buflers for AE from 

neighbor 

Fig. 5. Details of node architecture and internode connections 

MBD has degree equal to at most 7. For deriving the diameter 
of the network, consider the lowermost level in the MBD. 
This corresponds to DG(2, 1 + 1) with diameter 1 + 1. Note 
that the farthest distance between nodes in the uppermost and 
lowermost level is only L. Hence, the farthest nodes in the 
MBD lie in the lowermost level, Le., the diameter equals 1 + 1. 
From ( I ) ,  the diameter of the MBD is O(1og N ) .  

Addressing Scheme: Consider a MBD with 1 levels. The 
address of a node in this network consists of two parts- 

1 )  the level number of the MBD in which it is present. This 
requires [log ( l )1  bits for its representation. 

2) index of the node in that level. This requires at most 
(1 + 1) bits to index a node in any level, because the 
lowermost level (i.e., level (1 + 1)) contains 2('+') nodes. 

The address of a node in a MBD with 1 levels, hence needs 
[log (1)1 + (1 + 1) bits. 

Extensible Issues: To extend a MBD with 1 levels, we can 
add the additional nodes at the lowermost level. Thus, extend- 
ing the network requires a fixed number of interconnections 
between the new nodes and the nodes at level (1+1) only. Note 
that the information integration process will not get affected 
at any other level of the MBD. Additional bits may be needed 
to address the nodes in the new level. 

C. Routing 

We show that messages can be routed efficiently in a 
decentralized manner in the MBD. We first consider routing 
within a level and then consider routing across levels. To 
evaluate the routing complexity, we assume that a message 
takes unit time to traverse a link. 

Intra-Level Routing: Routing in the top level takes unit 
time step since the nodes are completely connected. Routing 
in a deBruijn network is a well studied problem-we will 
consider the routing algorithm presented in [4]. In this al- 
gorithm, tag bits are appended to the message at the source 
before routing. These tag bits are used by intermediate nodes 
to compute the address of the next node in the path. This 
method assumes that all the nodes in the path are fault-free. 

Fig. 6. Type 1 routing tag 

Hence the algorithm will fail if any of the intermediate nodes 
or links are faulty. 

In this section we describe two distributed routing algo- 
rithms PATH.l and PATH.2 in which the address of the next 
node is computed at the previous node in the path. PATH.1 
takes O(1ogN) steps in a deBruijn network with N nodes, 
and PATH.2 takes O(1ogN) steps. 

Let a binary deBruijn network have N = 2k nodes and 
let S = S k - l S k - z " . s l s o  be the source node that sends a 
message to the destination node D = dk-ldk-2 . . . d l d o .  

The message consists of the data and the message header. 
The message header contains a routing tag whose content 
depends on the type of routing being performed. Two types of 
routing tags are used-one for normal routing (Type 1) and 
the other for fault tolerant routing (Type 2). 

The Type 1 routing tag contains the source and destination 
node addresses, a counter ( z ) ,  and an interlevel routing bit 
(IRB). The IRB bit is set if the source and the destination 
nodes are in different levels and is reset if the nodes are in 
the same level. The number of message hops from the source 
node to the current node is recorded in the counter, and is 
used to generate the address of the next node in the path. Fig. 
6 shows a Type I routing tag. 

PATH. I Algorithm 

From the construction of the deBruijn network we know 
that the source node has the following neighbors-dosk-lsk-2 
. . . s1 and s k - 2  . . . s1sodk-1. Using this property we can 
now generate two routes by appending successive bits of the 
destination node to the source address. 

Route 1 
( z  = 0) ~ k - ~ s k - z  . . . slsO (source) 
(2 = 1) d O S k _ 1 S k - 2 " ' S 1  

(z = '2) dld"Sk-1'. . S2 

(z = k )  d k - 1 d k - 2  . . . d l d O  (destination) 

(z = k )  dk-Idk-2 . . . dido 
Clearly Route 1 and Route 2 take exactly k = l ogN steps. 

Let ik-1ik-2 . . .  ilia be the address of the node under 
consideration. The following steps (executed by each node) 
describe the PATH. 1 algorithm: 
el) If the label of the node is the same as the destination 

address in the routing tag, then accept the message. 
2) Otherwise, check the value of the routing tag counter z. 

The address of the next node in the path is 

(destination) 
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detected this fault can run a diagnostic algorithm on the 
faulty node or link after isolating it. 

2)  If the faulty node or link is in the path of an abstract 
estimate transmitted towards its destination, this abstract 
estimate can be re-routed around the fault to the destina- 
tion. After the integration process is complete the node 
which detected the fault can run a diagnostic algorithm 
on the faulty component. 

The MBD network provides fault tolerance by taking both 
of the remedial actions mentioned previously. 
Suppose a node X ,  with children Y and 2, is faulty. In the flat 
tree [ 111  network the subtree rooted at X is unusable. In the 
MBD network, however, the abstract estimates of Y and 2 are 
also read by the neighbors of Y and 2. Thus the abstract esti- 
mates of Y and 2 get factored into the final abstract estimates 
produced by the neighbors of Y and 2. Hence the subtree 

TO parent ( A E ~ )  

61 ~ Buffer for sensor output 
82, 63 - Buffers for AE from 

children 
64-67 - Buffers for AE from 

Step 2: 
Step 3: 

Step 4: 

\ \  ’ . . .  
Fig. 11. Information integration process. 

integrate them with abstract estimate from local 
sensor to get AE’. 
Send AEi to neighbors. 
Receive abstract estimate from neighbors and 
“compare” with own abstract estimate to 
compute A E f .  Identify any faulty node in the 
process. 
Send A E f  to parent node. 

This process of information integration ensures that only the 
“correct” estimates move up to the commander nodes in the 
network. Note that the width of the estimates moving upwards 
is bounded by the width of one of the correct estimates of that 
level of the MBD. An incorrect estimate would be received by 
a parent only when the child or the link connecting the two 
nodes is faulty. 

Fig. 1 1  shows the complete information integration process 
at a node in the network. 

E. Fault Tolerant Issues 

In a large network it is unrealistic to expect all the nodes 
or links along a path to be fault-free at all times. When 
some nodes or links fail, an alternative path that avoids 
the faulty node or link must be derived. One of the major 
advantages of our network over the network proposed in [ 111 
is that abstract estimates can be routed around faults using the 
interconnections between nodes at the same level. 

A node is faulty if it sends an incorrect abstract estimate to 
its parent or to any of its neighbors. Link faults can be detected 
if a node does not receive the abstract estimate of its neighbor 
during the comparison step. When a node (a node failure is 
assumed to be equivalent to the failure of all links associated 
with it) or link failure is detected, any of the following actions 
can be taken. 

1)  The fault can be ignored during the integration process. 
After integration is complete and abstract estimates have 
been sent to the upper level of the MBD, the node which 

rooted at X does not become unusable-only the faulty node 
is unusable. Moreover, X is identified as a faulty node during 
the comparison step because its abstract estimate (which it 
sends to its neighbors) may not contain the physical value. 

If action 2 )  is taken by the neighbor of the faulty node, 
then it must reroute the abstract estimate received, around the 
faulty node to the destination. This means that the destination 
node must wait for more time to receive the abstract estimate, 
because additional hops may be required for rerouting the mes- 
sage. This requires that the value of y (maximum difference in 
time that a node can tolerate between intervals that can be inte- 
grated-please see the next section on clock synchronization) 
be increased to maintain the “near synchronous” behavior of 
the sensor network. Note that by increasing the value of y, the 
network would tolerate single node/link fault but the process 
of sensor integration would be slowed down. Samantham and 
Pradhan [8] mention that four additional hops are enough to 
avoid a single node fault in a binary deBruijn network. Since 
the nodes in every level (except the top level) in the MBD 
are arranged in a binary deBruijn network, the value of y will 
have to be increased by four time units. 

In the remaining part of this section, we show one way of 
avoiding a single node fault using exactly four hops, when 
routing in any level of the MBD except the topmost level. Let 

be the destination node. Application of the PATH.l algorithm 
yields the following path: 

S k - l s k - 2 . .  . slso be the source node and d k - l d k - 2 . .  . dido  

( z  = 0)  s k - l S k - 2 ” ’ s 1 s o  (source) 
( 2  = 1) S k - 2 S k _ g . ’ . S o d k - i  

( 2  = 2 )  S k - g * . ’ S O d k - i d k - 2  

( z  = k )  d k - l d k - 2  ’ .  .dido 
Assume that either node i 2  or the link between i l  and 22 

has failed. We now show an alternative route (reroute) between 
i l  (rerouting source) and i3 (rerouting destination) that takes 
only four additional hops. 

(destination) 
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I I I 

Final output Final output F i n a l  output 
estimate estimate e s t  ima t e 

Fig. 9. Integration step. 

The proof is by induction. The base case for n = 3 is 
straightforward to prove by enumeration (see Fig. 9). Consider 
p intervals and assume that the lemma holds for less than p 
intervals. Consider the first ( p  - 1) of the p sorted intervals. 
Since we know that there can be at most one fault, either all the 
( p  - 1) intervals intersect or exactly ( p  - 2) intervals intersect. 

Case I :  Exactly ( p - 2 )  intervals intersect (there is one fault 
among the ( p -  1) intervals): by the induction hypothesis, there 
are at most two ( p -  2) interval intersections-A (A l ,  A , )  and 
B (Bl, ElTL); let Al < Bl. Further, A and B are non-intersecting 
(Le., A ,  < Bl)-otherwise they would have formed a ( p  - 1) 
intersecting interval. Since there can be one fault at most, the 
pth interval has to be correct and has to intersect with B giving 
rise to one ( p  - 1) intersecting interval. 

Case 2: All ( p  - 1) intervals intersect: Let the intersecting 
interval be C (Cl. C,). By the induction hypothesis there are 
at most two ( p  - 2) interval intersections D (Dl.  D,) and E 
(El,  E,) and these overlap-Le., Dl 5 El. El < D,. Further, 
since C is the intersection of D and E, C, = min (0,. E,) 
and Cl = El = ( p  - l ) ~ ,  the lower bound of the ( p  - 1)st 
interval. Now the pth interval can intersect with some or all 
the intervals C, D, and E. Several cases arise: 

Case 2a): The pth interval ( p l ,  p,) intersects C-the 
p intersecting interval is then ( p l .  min (p,. C,)), i.e., 
( p l ,  min (D,, E,, p , ) ) .  The pth interval could intersect either 
D (if D, > E,) or E (if E, > D,) but not both to form 
another ( p  - 1) intersection. 

Case 2b): The pth interval (pa, p,) does not intersect C. 
Hence, pl > min (D,, E,). The pth interval intersects either 
D (if D, > E,) or E (if E, > 0,) but not both both to form 
a ( p  - 1) intersection. 
The ( p  - 1) intersecting intervals arising from Case 2 are the 
interval C and at most one more from Cases 2(a) and 2(b). 
The lemma then follows from the above cases. 

A direct consequence of Lemma 3 is the following theorem. 
Using the theorem, the search for a faulty node is narrowed 
down to at most nodes for each fault. 

Theorem I: Given a set of n intervals containing at most 
one faulty interval, 

1 )  there is no faulty interval if there is no 71 - 1-interval 
intersection, 

2) the interval not intersecting with an n - 1-interval 
intersection is faulty if there is exactly one R - 1-interval 
intersection, and 

3 )  there are two potentially faulty intervals if there are two 
n - 1-interval intersections one of which is incorrect. 

In case 3), the two potentially faulty nodes can be traced by 
taking the set difference of the interval names that belong to 
each (n  - 1) interval intersection. 

I 
5 - F3ne.l OUtDut 

estimate 

Fig 10 Comparison step 

We now describe the information integration process. For 
convenience, we will refer to the information integration 
of abstract estimates between distinct levels as “integration” 
and refer to the information integration within a level as 
“comparison.” 

Abstract estimates move upward from the leaf nodes to the 
commander nodes. Every non-leaf node of the network com- 
bines the abstract estimates of its two children and the local 
sensor (sensor associated with this PE) to arrive at a new ab- 
stract estimate (AE’) .  This step is called the “integration” step. 

In the integration step, we assume that at most one of the 
three (local sensor and 2 children) received abstract sensor 
estimates is incorrect. The new abstract estimate is found from 
the three cases (refer Fig. 9) that could arise (Theorem 1). If 
there are two 2 interval intersections, then the smallest interval 
containing these intervals forms the new abstract estimate. It 
can also be shown [lo] that this new estimate is at most as 
wide as one of the input abstract estimates. 

Next, each node sends its AEz to all its neighbors. When 
a node receives AE‘s from its neighbors, it combines them 
to arrive at a new estimate A E f .  This step is called the 
“comparison” step and the algorithm used to combine the 
estimates is similar to the one described for the integration 
step. In this step, however, a node combines 3, 4, or 5 
estimates depending on the number of its neighbors (2, 3 ,  or 
4 respectively). 

Since the MBD can tolerate at most one fault (node or link) 
per level, one of the estimates received from a neighbor could 
be incorrect. Hence, when a node receives z (z = 3, 4 or 
5) intervals in the comparison step, it chooses the smallest 
interval containing all (which is at most two as shown in 
lemma 3 )  the a - 1-interval intersections as the output. The 
width of this abstract estimate is again at most as wide as one 
of the input correct intervals. 

Fig. 10 shows the comparison process in a node of 
the network. 

If there are two z -  I-interval intersections in the comparison 
step, then we know that there exists an incorrect interval. 
Jdentifying the faulty node which sent this incorrect interval 
requires the diagnostic testing of at most two nodes as we 
showed in Theorem 1 .  Once a node has been identified as 
faulty, appropriate action can be taken so as to either “repair” 
the faulty node or replace it and notify the parent and children 
of the faulty node. In this paper, we are not concerned with 
the problems of identifying the cause of faulty behavior and 
attempting to rectify that cause. 

The following steps summarize the process of information 
integration: 

Step I: Receive abstract estimates from children and 
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000 

1 00 110 

Fig. 7. PATH.l route between 011 and 101. 

111 

d z Z k - 1 i k - 2 . .  . i l  (Route 1) OR i k - 2 i k - 3 . .  . i l i O d k - r - 1  

(Route 2). 

next node. 
3) Increment the counter z and route the message to the 

Fig. 7 shows a path from node 011 to node 101 in a 
DG(2, 3) network using Route 2 of the PATH.1 algorithm. 

PATH.2 Algorithm 

PATH.2 algorithm routes the message along the shortest 
path between the source and destination nodes. To find 
the shortest path, we treat the node addresses as binary 
strings and use a string matching algorithm described in 
[I]. 

Find the largest x such that s , - 1 s z - 2 . ” s 1 s 0  = 

s k - y  = d y - 1 d y - 2 . . . d l d 0  . We can compute x and y in 
O ( k ) ,  Le., O(1ogN) time. The following three cases arise 
depending on the relationship between x and y. 

Case 1: (x > y)-the shortest path is given by the follow- 
ing sequence of nodes: 

(z = 0) sk-1.!?&.2. .  . slso 

d k - l d k - 2 . .  . d k - , ,  and the largest y such that S k - l S k - 2 . .  . 

(source) 
(Z = 1) S k - z S k - 3 . .  . .SOdk-z- l  

( Z  = 2) s k - 3 . .  . S O d k - , - l d k - , - 2  

(2 = k - y) d k - l d k - 2 . .  . s k - y + 2 S k - y + l  (destination) 
The destination is reached after ( I ”  - y) steps. 

Case 3: (x = y)--choose either of the above routings to 
obtain the shortest path. 

For this algorithm, the routing tag counter is initiated to 
k - x o r k - y .  

Fig. 8 shows the shortest path between nodes 011 and 101 
in a DG(2, 3) network using the PATH.2 algorithm. In this 
case x = 1 and y = 2; hence, the shortest path is of length 1. 
Using the PATH.1 algorithm yields a path length of 3. 

The following steps describe the PATH.2 algorithm (as 
executed by node i). 

In practice, both of the algorithms would be implemented 
using shift/and complement operations at each step. this would 

000 

100 110 

Fig. 8. PATH.2 route between 011 and 101. 

111 

obviate the need for the routing tag counter thus reducing the 
message header requirements; further, an expensive increment 
operation is replaced by a shiftlcomplement operation. Note 
that the value of x and y need not be computed by all nodes 
in the path. Instead, the value of z or y can be transmitted in 
the message header. 

Inter-Level Routing: Let the source (S) and destination (D) 
nodes be at levels L and L - X respectively. At the source 
the inter-level routing (IRB) bit is set to “1” to indicate 
that the source and destination nodes are in different levels. 
Further, when the IRB bit is set, the routing tag counter is not 
incremented in order to maintain a proper value of the counter 
for intra-level routing following the inter-level routing. 

The source node S first routes the message to its parent 
str(S).  This procedure is repeated recursively till the message 
is received by a node at the same level as the destination 
node D. The IRB bit is reset to “0” now, and the source 
address is replaced by the address of the node that received 
the message. The message can be then routed to the destination 
using PATH.1 or PATH.2 algorithm. 

When the destination is at a higher level than the source, 
routing can be similarly done by using upp( ) to generate the 
address of the next node in the path till the message reaches 
the same level as that of the destination node. The message 
can then be routed using PATH.l or PATH.2 algorithm. Note 
that messages in the MBD are usually routed from higher to 
lower levels only since the final integration is done by the 
commands. 

D. Information Integration 

In this section, we describe the process of information 
integration in the MBD. The idea behind the integration is to 
a) keep the communication requirements small-this is done 
by communicating the abstract estimate as a single interval 
and b) maintain accuracy by ensuring that the physical values 
of interest is always contained in the abstract estimate. 

Since the deBruijn network has a connectivity of 2, the 
MBD can tolerate at most one node fault or link fault per 
level (except at the topmost level which is fully connected). 
We first prove some results related to fault tolerance when 
abstract estimates (or intervals) are to be integrated in the 
presence of faults in the network. 

Lemma 3: Consider n (n  2 3) intervals of which at most 
one can be faulty. Then there can be at most two (n  - 1) 
distinct interval intersections among these n intervals. 

Proof: Without loss of generality, assume that the n 
intervals ( i t ,  iu) (1 5 i 5 n)  are sorted in increasing order 
by their lower bounds. 

‘ 1  
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Source 
Type IRB Address 

Destination Routing Source Destination 

Address Co:ftetzr A ~ ~ ~ ~ s s  
Address RC RRB 

( 1 3 )  

Fig. 12. Type 2 routing tag 

000 11 

Fig. 13. Fault tolerant routing between 001 and 1 I O  when 01 1 is faulty. 

When il receives a message (consisting of the abstract 
estimate and the Type 1 tag), it appends four fields to the 
Type 1 tag which enable rerouting of the message-( 1) source 
address (il), (2) destination address (i3), (3) reroute counter 
(RC), and (4) rerouting bit (RRB). We shall refer to the tag, 
formed by appending reroute fields to the Type 1 tag, as Type 
2 tag. Figure 12 shows a Type 2 tag. To initiate rerouting, il 
increments z and sets RRB="l". When RRB="l", a node 
does not increment z ;  instead it uses RC to compute the 
address of the next node in the reroute. When the message 
reaches i3, i3 removes the reroute fields from the tag, and 
increments z .  Routing from 23 then proceeds normally using 
PATH. 1 or PATH.2 algorithms. 

The alternative route between il and i s  is shown here: 
( z  = m - 1) S k - m S k - m - 1  ' ' ' SOdk-1  ' ' .  d&m+J 
( Z  1 VL) Sk-m-1Sk-m-2."SOdk-l..'dk-m+ldk--n 
(2 = m) S k - m - 2 S k - m - 3  ' .  ' SOdk-1  . ' ' 

- 

dk-m+ldk-mdk-m- l  - 
( z  = m) d~-m-lSk--m-~".SOdk-~'..dk-nl+ldk-m 
( z = VL) d k - m d k - m - l  . . . sodk-1  . . . dk-m+l  

(2 = m ~ )  dk-m-1Sk-m-2...SOdk-l...dk--m+idk-m 
( z  = m f 1) S k - m - 2 S k - m - 3  ' .  ' s o d k - 1  ' .  ' 

d k - m + l d k - m d k - m - l .  

The above route takes 6 steps-only 4 more than the normal 
route between il and 23. Figure 13 shows fault tolerant routing 
in a DG ( 2 ,  3 )  (level 3) between nodes 001 and 110 when the 
node 01 1 is faulty. This alternative route can be chosen when 
a faulty node is encountered in the path to the destination 
node. Hence, the routing algorithms given earlier can be easily 
adapted to take the alternative path in case of faults. This 
rerouting algorithm is also more adaptive to faults than the 
one presented in [8]  since our algorithm does not require that 
the presence of a fault be known to the source node as the 
other algorithm does. 

Finally, since the network can sustain one node or link 
fault at every level, the MBD network with 1 levels and 
N = 2(2l - 1) nodes can sustain 1, i.e., approximately log N ,  
node or link faults. 

111. CLOCK SYNCHRONIZATION ISSUES 

"close to each other" must be integrated if meaningful results 
are desired. This is achieved by time-stamping each estimate. 
The condition under which two estimates may be integrated 
is given at the end of the next subsection. In a distributed 
environment such as ours, there is no central synchronized 
clock which regulates the activities of each node. Instead, each 
node is under the control of its own clock. Since the sensor 
responds to real-time events, it is convenient for the clock to 
provide the real, i.e., physical time. Further, since the estimates 
from different sensors have to be integrated, it is necessary for 
the time provided by the clocks of the sensors to be "close 
to each other." The clock at each node may not be accurate 
because of a variety of reasons such as clock shift, change in 
temperature, etc. Each clock must therefore synchronize with a 
more accurate clock. We assume the existence of a central time 
server which when requested for the time at t ,  provides the 
time C(t). The PE's in our DSN spatially lie within tens of feet 
from each other, hence the existence of a single time server 
for the clocks on all the PE's can be assumed. The central 
time server itself periodically synchronizes with a universal 
time server, which is always accurate and lies outside our 
environment. 

The following definitions are used. 

6 

ir 

K 

(7 

S Channel transmission delay. 
E 

y 

Maximum allowable deviation in time of a clock on 
a PE. 
Maximum allowable deviation in time of a clock on 
the central time server. 
Maximum allowable drift rate in time of a clock on 
a PE. 
Maximum allowable drift rate of the clock in the 
central time server. 

Delay in receiving the message sent by the central 
time server to any PE. 
Maximum difference in time that a node can tolerate 
between intervals that can be integrated. 

We use the clock model described in [ 111 to synchronize 
the clocks in the MBD. We summarize the basic results of the 
model in the next two subsections. 

A.  Clock Behavior and Synchronization 

Let Cp( t )  be the time provided by the clock on PE p at 
time t (t is the time provided by a universal time server). 
We assume that the clocks run continuously rather than in 
discrete "ticks." Hence, (dC,(t))/dt denotes the rate at which 
the clock is running at time t .  We also assume that this rate 
is nonnegative; hence, the time on the clocks monotonically 
increase. 

We now state the conditions on the clocks for proper 
synchronization. 

Clock Condition 1: The deviation in time of each clock is 
bounded, i.e., for PE p ,  there exists F, << 1 and a << 1 such 

So far we have assumed that any two abstract estimates 
can be integrated. In reality, since the sensor outputs typically 

that 

change as a function of time, only estimates that are temporally It - CP(t)l I t p  (2a) 
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It - C(t>l 5 a. (2b) 

Clock Condition 2: Between synchronizations, the drift 
rate of the clock is bounded, i.e., for PE p ,  there exists 
tcp << 1 and 0 << 1 such that 

to any PE. Also, let T: and T: be the periods corresponding to 
T, and T, as observed by the central time server. The bounds 
on these observed periods can be shown to be [111: 

Theorem 3: The time period as observed by the central time 
server between synchronizations of the central time server is 

CZock Condition 3: The clock on each of the PE’s and the 
central time server advance monotonically. 

For simplicity, we assume that tp and I E ~  is the same for 
all PE’s, i.e., cp  = t and I E ~  = K .  From Clock Condition 1 
we have, 

Synchronizution Bound: If p and q are two PE’s then 

ICp(t) - Cq(t)I 5 % .  (4) 

Let Smin and S,,, be the minimum and maximum values of 
delay for a message sent by a PE to its neighbor. Let y be the 
maximum difference in time that a node can tolerate between 
intervals that can be integrated. Note that the value of y will 
depend on the longest path between leaf nodes and commander 
nodes, which is equal to L in a MBD with L levels. 

The following lemma and theorem state precisely the con- 
ditions for combining abstract sensor estimates which are 
temporally “close to each other.” The discussion in this section 
follows closely the discussion presented in [ 111. We therefore 
state all the results without proof. The interested reader is 
referred to [11]. 

Lemma 4: Let a message be received by PE p at CP(t). 
Then this message was sent in the interval (Cp(t)  - 2c - 

The time stamp of an abstract estimate may not belong 
to the interval given above if the channel is faulty. The 
following theorem gives the condition under which estimates 
are “temporally close” and may be integrated. 

Theorem 2: Let the three proper abstract sensor estimates 
11, 1, and 13 be received by PE p at times 

Smaxl C p ( t )  + 2~ - bmin). 

C p ( t l )  < Cp(t2) < CP(t3) 

respectively. Then I, (i = 2, 3) can be integrated, iff 

( C p ( t i )  - C p ( t 1 )  + 46 + amax - Smin) I 7. 

Since the clocks on the central time server and each of the 
PE’s drift, they have to be periodically reset. We now state a 
bound on the time period between synchronizations. Let T, be 
the time period of synchronizations of the central time server, 
and let Tc be the time period between synchronizations of the 
PE p. 

The central time server synchronizes itself every T, seconds 
with a perfect universal time server which exists outside 
the environment of the DSN. The central time server also 
synchronizes the clock on a PE every Tc seconds. 

Let Jmin and [,,, be the minimum and maximum of the 
delay in receiving the message sent by the central time server 

bounded by 

Theorem 4: The time period as observed by the central 
time server between synchronizations of the clock on a PE 
is bounded by 

Ti < - 2a  - ( L a x  - J m i n )  
- a. c -  

IE 

IV. COMPARISON WITH COMMERCIAL SENSOR NETWORKS 

In previous sections we described the topological and fault- 
tolerant properties of the MBD. We also saw that routing in 
the MBD is very simple. Nearly all sensor networks used in 
process control industries now are based on the bus or ring 
systems. With the need for large scale DSN’s (combined with 
the need for high sampling rates), the common data path in the 
bus and the high diameterAow connectivity of the ring make 
them both unsuitable to support the communication required 
among the nodes of the DSN. Further, since data fusion is 
by nature hierarchical, a hierarchical interconnection network 
would be most suitable for such a function. 

Table I compares the topological, routing and fault-tolerant 
properties of the MBD with the bus and ring networks. It can 
be seen that the MBD is a good alternative to the bus and 
ring networks. 

V. CONCLUSION 

The effective use of multiple sensor systems requires the 
solution of various problems relating to sensor models, the 
architecture of the sensor network, the integration of infor- 
mation at each node of the network, the cost of information 
transmission, and the fault tolerance of the network. The 
integration of information in real time requires the clocks at 
each of the nodes be synchronized. Synchronization of clocks 
is a nontrivial task in such distributed sensor networks. In an 
earlier paper [ 111, some issues related to the architecture of 
DSN’s, information integration, and clock synchronization had 
been addressed. This paper extends the study by considering a 
more sophisticated architecture for DSN’s which has a number 
of advantages including the ability to tolerate single node or 
link faults at each level. 

Since our focus has been primarily on computational issues, 
we have chosen to represent sensor output information by 
Marzullo’s simple and elegant model which is based on 
real valued intervals. We have also used a relatively simple 
information integration algorithm. We are aware that sensor 
modeling is itself a very detailed area of study [7] and that 
very sophisticated methods exist for information integration. 
We have also assumed that the output of each sensor is a 
physical value. The above discussion and results easily extend 

‘ 1  
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TABLE I 

Bus Ring MBD* 

Communication O ( N )  O ( N )  O(logN) 
O ( N )  O(1ogN) Diameter OP) 

Degree 1 2 
Routing Simple Simple Simple 
Fault-tolerance 1 2 O( logN)t  
Cost (number of links) 1 N - 1  < 3.5N 

7 

BMD* multilevel de3nrjin network. 
t Assuming of one fault per level. 

to the case when the output of a sensor is a vector rather than 
a single value. 

This study could be extended in several directions. A 
Straightforward extension is to assign weights to the abstract 
estimates produced as a function of its level in the hierarchy. 
We also plan to investigate more sophisticated fault tolerant 
strategies for the deBruijn network than the scheme presented 
here. A future goal of our project is to investigate the compu- 
tation and communication requirements of more sophisticated 
integration algorithms executing on large scale DSN’s. 
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