
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994 175

A Versatile Architecture for the Distributed
Sensor Integration Problem

S. S. Iyengar, Senior Member, IEEE, D . N . Jayasimha, Member, IEEE, and D . Nadig

Abstract-The computational issues related to information in-
tegration in multisensor systems and distributed sensor networks
has become an active area of research. From a computational
viewpoint, the efficient extraction of information from noisy and
faulty signals emanating from many sensors requires the solution
of problems related a) to the architecture and fault tolerance of
the distributed sensor network, b) to the proper synchronization
of sensor signals, and c) to the integration of information to
keep the communication and the centralized processing require-
ments small. In this paper, we propose a versatile architecture
for a distributed sensor network which consists of a multilevel
network with the nodes (processing elementlsensor pairs) at
each level interconnected as a deBruijn network. We show that
this multilevel network has reasonable fault tolerance, admits
simple and decentralized routing, and offers easy extensibility.
We model information from sensors as real valued intervals and
derive an interesting property related to information integration
in the presence of faults. Using this property, the search for
a fault is narrowed down to two potentially faulty sensors or
communication links. In a distributed environment, information
has to be integrated from “temporally close” signals in the
presence of imperfect clocks in a distributed environment. We
apply the results of past research in this area to state various
relationships between the clocks of the processing elements in the
network for proper information integration.

Index Terms- Abstract estimate, clock synchronization, dis-
tributed sensor networks, deBruijn networks, fault tolerance,
information integration.

I. INTRODUCTION
N RECENT YEARS, there has been increasing interest in I the development of distributed sensor networks (DSN’s) for

information gathering. This is partly because of the availability
of new technology which makes the DSN’s economically
feasible to implement and the increasing complexity of today’s
information gathering tasks to which they are applied. These
tasks are usually time-critical and rely on the reliable delivery
of accurate information for their completion. To meet these
requirements, a DSN must be able to dynamically respond
to fault conditions, reconfiguring its activities as necessary to
compensate for disturbances. Thus, the search for efficient,
fault-tolerant architectures for DSN’s has become an important

Manuscript received January 13, 1992. This work was supported in part by
The Office of Naval Research under Grant ONR-N00014-91-J-1306, in part
by the LEQFS-Board of Regents under Grant LEQFS-RD-A-04, and in part
by the National Science Foundation under Grant CCR 8908189.

S. S. Iyengar and D. Nadig are with the Department of Computer Science,
Louisiana State University, Baton Rouge, LA 70803.

D.N. Jayasimha is with the Department of Computer and Information
Science, The Ohio State University, Columbus, OH 43210. In 1993-1994,
he will be at NASA-Lewis Research Lab.

IEEE Log Number 9212756.

area in research. A DSN consists of a set of sensors, a set
of processing elements (PE’s), and a communication network
interconnecting the various PE’s. One or more sensors is
associated with each PE. We refer to the PE and its associated
sensor(s) as a node.

The integration of multiple, disparate sensors into a useful
sensor network involves the solution of several different
problems. For an excellent discussion of the problems and the
current state of the art in multisensor integration, the reader
is referred to the survey paper by Luo and Kay [9]. From a
computational viewpoint, however, the efficient extraction of
information from noisy and possibly faulty signals emanating
from many sensors requires the solution of problems relating
1) to the architecture and the fault tolerance of the distributed
sensor network, 2) to the proper synchronization of sensor
signals, and 3) to the integration of information to keep the
communication and the processing requirements small.

Wesson et al. [2] were the first to attempt designing efficient
networks for distributed sensing. They proposed the hierar-
chical and committee interconnection topologies. A sensor
network based on a fixed number of complete binary trees
fully interconnected at their roots (we will refer to this network
as a flat tree network) was considered in [l l] , [12] and the
following issues were studied:

1) the integration of information in real time when clocks

2) the transmission of information without incurring heavy

3) the fault tolerance of the network to certain types of

at the nodes are not perfect,

communication costs, and

faults.

A. Scope of the Paper

In this paper, which is a continuation of research reported
in [1 I], [121, we propose a new versatile architecture based on
the deBruijn network, (first proposed by Pradhan [3]) , which
has several advantages over the flat tree network. Specifically,
the proposed network has better fault-tolerant properties and
supports more nodes than the latter with the same diameter.
We show how information integration could be achieved in
this network and derive an interesting property related to such
integration in the presence of faults.

This paper is organized as follows. Section I-B has a brief
overview of sensor integration. The notations and definitions
used in the paper are presented in Section I-C. After motivating
the need for a new sensor network in Section 11-A, we propose
a multilevel network with each level having the deBruijn

00 18-9340/94$04.00 0 1994 IEEE

176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

interconnection in Section 11-B. Algorithms for routing in this
network are described in Section TI-C. We describe sensor
integration in the presence of faults in Section 11-D. The fault
tolerant properties of the network are the subject of Section
111. In a DSN, it is necessary that the clocks on the nodes
be synchronized. A variant of a previously known method for
synchronizing clocks is described for the network in Section
111. In Section IV, we compare topological, routing and fault-
tolerant properties of the proposed DSN with other sensor
networks. We conclude the paper by highlighting the features
of the proposed network and indicate the future directions this
area of research could possibly take.

B. An Overview of Sensor Integration

The PE’s of a DSN combine the sensor output readings
to derive an accurate value of the physical process that the
sensors monitor. This process of combining the sensor outputs
is called information integration or data fusion.

The method used to integrate the information passed by the
sensors depends on whether the sensors provide competitive
information or complementary information. In the former
case, each sensor ideally provides identical information. This
redundancy of the sensor readings helps in enhancing the
reliability and fault tolerance of the network. Also, noise in
the signals can be detected and removed. This is because the
noise in different sensor signals tend to be uncorrelated while
the signals of interest are correlated. It is therefore necessary
for the information from the sensors to be combined in a
meaningful and effective manner, so that the result is fairly
accurate. Complementary information integration is done when
only partial information is available from each sensor; such
information is then integrated to obtain the result.

Following Marzullo [lo], we distinguish between a cuncrete
sensor and an abstract sensor. A concrete sensor is a device
that can be used to sample a physical state variable. An abstract
sensor is a piecewise continuous function from a physical
state variable to a dense interval of real numbers. The reasons
for using an abstract sensor rather than a concrete sensor are
detailed in [IO], [111. Determining the function which maps
a concrete sensor to an abstract sensor depends on many
factors such as the choice of a particular sensor type (e.g.,
motion detecting sensor, range finding sensor, vision sensor),
the compensation that has to be applied to the raw sensor
value which is itself dependent on the local values of certain
parameters (e.g., design parameters of the sensor), the nature
of the application, etc. For instance, if a sensor reads a value to
be S and its maximum error is known to be E , then an abstract
sensor, albeit simple, could be the interval (S - E , S + E) . A
PE at a node converts a concrete sensor to an abstract sensor.
The abstract sensors are combined or integrated to form an
abstract estimate. The particular method of combining depends
on the integration algorithm used. To keep the terminology
simple, we refer to the abstract sensor as the abstract estimate
also. An abstract estimate could, in turn, be combined with one
or more abstract estimates to form a new abstract estimate.

Marzullo [lo] considers the case of a processor receiving
input from several sensors whose outputs are intervals. He

Fig. 1. Integrating six intervals with three incorrect.

gives a fault tolerant integration algorithm which takes as
input the intervals representing the sensors and gives as output
an interval which always contains the actual physical value.
A correct sensur is one whose interval contains the actual
physical value. Hence, any two correct sensors must intersect
since they both contain the physical value being measured.

Marzullo considers the case when at most f (f < n) sensors
are faulty in a n-sensor network. The physical value would
then be contained in any of the (n - f) intersecting intervals.
Since it is not possible to decide which intersection contains
the physical value, the smallest connecting interval containing
all the (n - f) intersections is taken to be the output of the
processor. It can be seen that this final estimate contains the
actual physical value. The final estimate, however, becomes
arbitrarily wide as the number of faulty sensors becomes large.
In such cases, an integration method described in [121 reduces
the width of the final abstract estimate. For simplicity, we
will use Marzullo’s model for information integration in the
proposed network. Fig. 1 illustrates Marzullo’s method for
integrating six intervals of which three are incorrect (i.e.,
n = 6, f = 3).

In this paper, we concentrate on competitive information
integration. The architecture described here could be used
effectively for complementary information integration in the
presence of noise and possibly faulty sensors.

C. Notations and Dejinitions

We model the DSN by an undirected graph G = (V, E) ,
where each node represents one or more sensors and an
associated PE of the network, and each edge represents a
communication link of the network. The length of a path
between two nodes is the number of edges encountered while
going from one node to another. The distance between two
nodes is the shortest length between the nodes. The diameter
of the network is the largest distance between any two nodes
in the network. The degree of a node is the number of edges
associated with that node. The degree of the network is the
largest degree of any node in the network.

Let yf represents a binary number with bit y repeated f
times; 3 represents the complement of y, and x represents the
don’t care bit. For example, the binary number OOOllxx is
represented by 0312x2. A node i in a network with N = 2k
nodes has the binary address ik-Iik-2.. .ilia where i k - l (z 0)

is the most (least) significant bit. The following definitions
describe two address transforming functions append (app) and
strip (str).

WENGAR et al.: DISTRIBUTED SENSOR INTEGRATION PROBLEM

Let M be a k-bit number. Then

1 I 1

For example, app(000, 1) = 0001 and str(O010) = 001. Note
that stl-(app(M. y)) = M .

Our interest lies in multi-level networks (MLNs) in which
each node of the network can be associated with a level
number. An 1-level network has 1 levels numbered from 0 to
1 - 1. The set of nodes at level m to which a node i at level r n
is connected form the neighbors of i . The set of nodes to which
i is connected at level 7 n - 1 form the parents of i. The set of
nodes to which i is connected at level wi + 1 form the children
of ,i. In the MLN that we consider for the proposed DSN, there
is a single node called the root at level 0, and each node at
a higher level number has at most one parent and at most
children. We refer to such a network as a r-ary MLN. The node
i at level m > 0 has the address im-li,_p...i180, where
each digit ij E (0. 1:'. , T - 1) (0 5 j < r n) . This node
i is connected to at most r children nodes whose addresses
are app(i . 0): a p p (i , l), app(i. T - l), and to its parent
node whose address is str(i) . For every node i at level m, the
relation Qm(i) yields the set of nodes to which i is connected
at level rn. In the network proposed, all but the Oth level of the
network have the same interconnection scheme at each level.

Hence two nodes i and , j in this network are connected iff
I) j = upp(i> b) , or
2) j = str(i) , or
3) j = @ (i)

where b E (0, l : . . . , r - l}.
A real interval R = (Rl> Ru) is represented by a pair of real

numbers; Rl is called the lower bound and R, is called the
upper bound of the interval R. We shall refer to real intervals
simply as intervals.

The width of the interval, IRl, equals (R , - I&). The ser
theoretic intersection of two intervals, X and 1' is defined as

X nY = (c I c E X and c E Y } .

Correspondingly, two intervals are said to intersect (or
overlap) if their set theoretic intersection is non empty.
Hence, if the set theoretic intersection of X and Y is
non empty then their interval intersection is the interval
(maz (X l , x). min(X, , Yu)). A special case of interval
intersection is interval inclusion. X includes Y if Xl < Yl
and X u > Y,. The span of two intervals X and Y is defined as

X U Y = (X l . Yu) .

Note that the span operation between two nonoverlapping
intervals may result in an interval that includes points not
lying in either of the intervals.

Intervals X and Y are said to be non distinct if either X
includes Y or Y includes X ; otherwise, X and Y are said
to be distinct.

d b
Fig. 2. A flat tree network with 12 nodes.

11. ARCHITECTURE OF THE DISTRIBUTED SENSOR NETWORK

This section describes the architectural features of the
proposed network. We provide the motivation for this archi-
tecture by reviewing the past work of other researchers and
pointing out the shortcomings of their approaches. In the next
subsection, we list desirable features of a DSN and later show
how the proposed network provides many of these features.

A. Motivation for a New Architecture

Wesson et ai. 121 have described two architectures for a
DSN. The first is the hierarchical or tree organization and
the second is the committee organization whose nodes can
send messages to one, some, or all nodes in the network.
The hierarchical network has several advantages like constant
node degree and easy extensibility. It is not a good choice
for a DSN, however, because a faulty node can disconnect an
entire subtree. The committee organization does not have this
disadvantage but is expensive and is not easily extensible.

It is clear from the above observations that both the commit-
tee organization and the tree organization have disadvantages;
a combination that uses the merits of both the types of
architectures is hence desirable. The flat tree network, referred
to earlier, incorporates some of the merits of both these
organizations. The nodes in this network are organized as
many complete binary trees, the roots of which are completely
connected. Fig. 2 shows a flat tree network with 12 nodes. It
has some disadvantages, however. For example, integration
errors o f the lower nodes accumulate as the information goes
up the hierarchy. One way to overcome this problem is to
interconnect nodes in the lower levels of this network.

This motivates our proposal for a class of networks which
have a committee organization at each level and an overall
hierarchical organization. The versatility of neworks with this
organization arises from the fact that several topologies could
be considered to interconnect nodes at each level. The neworks
that we propose consists of the flat tree with nodes at each
level interconnected as a deBruijn graph. We will show that
this class of networks has several advantages such as

1) they allow the construction of large networks with
bounded degree,

2) their diameter of these networks grows only logarithmi-
cally with the the number of nodes,

3) they admit simple routing schemes, and
4) they possess fault tolerant capabilities.

178 lEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

000

100 110

Fig. 3. DG (2, 3).

111

010

B. The Proposed Architecture

The proposed DSN is a modified I-level MLN with the top
level completely connected and with each of the other levels
interconnected as a deBruijn network. The versatility of this
organization arised from the fact that several interconnection
topologies could be considered to interconnect nodes. Before
describing the proposed architecture for DSN, we briefly
review the evolution of the deBruijn network and mention
its important features.

The use of deBruijn networks as interconnection topologies
for fault-tolerant parallel and distributed architectures was first
proposed by Pradhan [3], who also proposed fault tolerant
VLSI architectures based on this network [5], [13]. Recently,
deBruijn networks have gained significant practical importance
with the on-going implementation of a 8096 PE deBruijn
architecture by JPL for the Galileo project, scheduled for
completion by 1995 [13].

An important feature of the deBruijn network is that it can
be configured as many useful computational networks in spite
of faults. In addition, deBruijn networks have

1) a small diameter
2) admit simple routing, and
3) possess good fault tolerant capabilities.
For a detailed discussion on the aforementioned features of

deBruijn networks, see the paper by Samantham and Pradhan
@I.

Using graph theoretic notation, the undirected deBruijn
network DG(d, k) has N = dk nodes with diameter k and
degree 2d. We are interested in binary deBruijn networks
DG(2, k) which have N = 2k. A node i of the network
with the binary address a k - l U k - 2 . . . ala0 has neighbors:

a k - Z a k - 3 ' . ' alaOak-1 (il)

04)

The address of neighbors i l and 23 is obtained by the
left shift-end-around operation and the right shift-end-around
operation on 2 respectively-they are called the L R and the
R R neighbors of i. The address of nodes a2 and i4 is obtained
by complementing the rightmost bit of il and the leftmost bit
of 23 respectively-they are correspondingly called the LRC
and the RRC neighbors of i. Fig. 3 shows an eight-node binary
deBruijn network with the nodes named with the convention
just described.

-
aoak-lak-2.. . a2a1.

-
01 1

101

level 2

level 3

111

Fig. 4. MBD with two layers.

The proposed DSN is organized as follows:
1) The nodes in the topmost level are called comman-

der nodes. There are four commander nodes that are
completely connected.

2) The nodes in each of the underlying levels are intercon-
nected as a binary deBruijn network (I - 1).

3) Each node X , at level m in the network is connected to
two children nodes app(X, 1) and app(X, 0) at level
m + l (m < Z - 1) and is connected to its parent node
str (X) at level m - 1.

Henceforth we shall refer to the proposed network as the
multi-level binary deBruijn network (MBD). Since the topmost
level of the MBD contains 22 nodes, it is convenient to assign
it level 2. Hence, an Z-level MBD has Z levels numbered
from 2 through 1 + 1. Fig. 4 shows a 2-level MBD-the
inter-level connections are shown by dashed lines and the
intra-level connections by solid lines. Each node of the MBD
has a PE, a clock which maintains real time, an associated
sensor which samples the physical variable(s) of interest, and
an associated buffer. The PE translates the sensor reading into
an abstract estimate, time stamps the estimate with the current
time, and places the abstract estimate in the associated buffer.
There is also a buffer associated with each link. The PE's
connected to the link have access to this buffer. Fig. 5 shows
the architectural details of a node of the MBD. (Note: With
slight modifications, we could allow for multiple sensors at
each node.)

Topological Properties: The following lemmas describe the
topological properties of the MBD.

Lemma I: The number of nodes in MBD with I levels is
4(2' - 1).

Proof: The number of nodes at level m(2 < m 5 I + l),
n,,, = 2 x nm-l; 722 = 4

Solving this equation yields the total number of nodes as

N = 4(2L - 1) (1)

Lemma 2: The MBD with L levels has degree 7 and
diameter L + 1.

Proof: The nodes at the top and bottom levels have
degree at most 5. Now, consider an internal node in the
network. This node is in a deBruijn network and hence has
at most 4 neighbors. The same node is also connected to
its 2 children nodes and a parent node. Hence a node in the

IYENGAR ef a/.: DISTRIBUTED SENSOR INTEGRATION PROBLEM

Type

179

Destination Routing T~~

IRB i % Z s Address Counter

To parent

/ I To neiqhbors

From neighbors

61 - Buffer for sensor output
82 63 - Buffers for AE from

children
64-67 . Buflers for AE from

neighbor

Fig. 5. Details of node architecture and internode connections

MBD has degree equal to at most 7. For deriving the diameter
of the network, consider the lowermost level in the MBD.
This corresponds to DG(2, 1 + 1) with diameter 1 + 1. Note
that the farthest distance between nodes in the uppermost and
lowermost level is only L. Hence, the farthest nodes in the
MBD lie in the lowermost level, Le., the diameter equals 1 + 1.
From (I) , the diameter of the MBD is O(1og N) .

Addressing Scheme: Consider a MBD with 1 levels. The
address of a node in this network consists of two parts-

1) the level number of the MBD in which it is present. This
requires [log (l)1 bits for its representation.

2) index of the node in that level. This requires at most
(1 + 1) bits to index a node in any level, because the
lowermost level (i.e., level (1 + 1)) contains 2('+') nodes.

The address of a node in a MBD with 1 levels, hence needs
[log (1)1 + (1 + 1) bits.

Extensible Issues: To extend a MBD with 1 levels, we can
add the additional nodes at the lowermost level. Thus, extend-
ing the network requires a fixed number of interconnections
between the new nodes and the nodes at level (1+1) only. Note
that the information integration process will not get affected
at any other level of the MBD. Additional bits may be needed
to address the nodes in the new level.

C. Routing

We show that messages can be routed efficiently in a
decentralized manner in the MBD. We first consider routing
within a level and then consider routing across levels. To
evaluate the routing complexity, we assume that a message
takes unit time to traverse a link.

Intra-Level Routing: Routing in the top level takes unit
time step since the nodes are completely connected. Routing
in a deBruijn network is a well studied problem-we will
consider the routing algorithm presented in [4]. In this al-
gorithm, tag bits are appended to the message at the source
before routing. These tag bits are used by intermediate nodes
to compute the address of the next node in the path. This
method assumes that all the nodes in the path are fault-free.

Fig. 6. Type 1 routing tag

Hence the algorithm will fail if any of the intermediate nodes
or links are faulty.

In this section we describe two distributed routing algo-
rithms PATH.l and PATH.2 in which the address of the next
node is computed at the previous node in the path. PATH.1
takes O(1ogN) steps in a deBruijn network with N nodes,
and PATH.2 takes O(1ogN) steps.

Let a binary deBruijn network have N = 2k nodes and
let S = S k - l S k - z " . s l s o be the source node that sends a
message to the destination node D = dk-ldk-2 . . . d l d o .

The message consists of the data and the message header.
The message header contains a routing tag whose content
depends on the type of routing being performed. Two types of
routing tags are used-one for normal routing (Type 1) and
the other for fault tolerant routing (Type 2).

The Type 1 routing tag contains the source and destination
node addresses, a counter (z) , and an interlevel routing bit
(IRB). The IRB bit is set if the source and the destination
nodes are in different levels and is reset if the nodes are in
the same level. The number of message hops from the source
node to the current node is recorded in the counter, and is
used to generate the address of the next node in the path. Fig.
6 shows a Type I routing tag.

PATH. I Algorithm

From the construction of the deBruijn network we know
that the source node has the following neighbors-dosk-lsk-2
. . . s1 and s k - 2 . . . s1sodk-1. Using this property we can
now generate two routes by appending successive bits of the
destination node to the source address.

Route 1
(z = 0) ~ k - ~ s k - z . . . slsO (source)
(2 = 1) d O S k _ 1 S k - 2 " ' S 1

(z = '2) dld"Sk-1'. . S2

(z = k) d k - 1 d k - 2 . . . d l d O (destination)

(z = k) dk-Idk-2 . . . dido
Clearly Route 1 and Route 2 take exactly k = l ogN steps.

Let ik-1ik-2 . . . ilia be the address of the node under
consideration. The following steps (executed by each node)
describe the PATH. 1 algorithm:
el) If the label of the node is the same as the destination

address in the routing tag, then accept the message.
2) Otherwise, check the value of the routing tag counter z.

The address of the next node in the path is

(destination)

I82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2. FEBRUARY 1994

detected this fault can run a diagnostic algorithm on the
faulty node or link after isolating it.

2) If the faulty node or link is in the path of an abstract
estimate transmitted towards its destination, this abstract
estimate can be re-routed around the fault to the destina-
tion. After the integration process is complete the node
which detected the fault can run a diagnostic algorithm
on the faulty component.

The MBD network provides fault tolerance by taking both
of the remedial actions mentioned previously.
Suppose a node X , with children Y and 2, is faulty. In the flat
tree [111 network the subtree rooted at X is unusable. In the
MBD network, however, the abstract estimates of Y and 2 are
also read by the neighbors of Y and 2. Thus the abstract esti-
mates of Y and 2 get factored into the final abstract estimates
produced by the neighbors of Y and 2. Hence the subtree

TO parent (A E ~)

61 ~ Buffer for sensor output
82, 63 - Buffers for AE from

children
64-67 - Buffers for AE from

Step 2:
Step 3:

Step 4:

\ \ ’ . . .
Fig. 11. Information integration process.

integrate them with abstract estimate from local
sensor to get AE’.
Send AEi to neighbors.
Receive abstract estimate from neighbors and
“compare” with own abstract estimate to
compute A E f . Identify any faulty node in the
process.
Send A E f to parent node.

This process of information integration ensures that only the
“correct” estimates move up to the commander nodes in the
network. Note that the width of the estimates moving upwards
is bounded by the width of one of the correct estimates of that
level of the MBD. An incorrect estimate would be received by
a parent only when the child or the link connecting the two
nodes is faulty.

Fig. 1 1 shows the complete information integration process
at a node in the network.

E. Fault Tolerant Issues

In a large network it is unrealistic to expect all the nodes
or links along a path to be fault-free at all times. When
some nodes or links fail, an alternative path that avoids
the faulty node or link must be derived. One of the major
advantages of our network over the network proposed in [111
is that abstract estimates can be routed around faults using the
interconnections between nodes at the same level.

A node is faulty if it sends an incorrect abstract estimate to
its parent or to any of its neighbors. Link faults can be detected
if a node does not receive the abstract estimate of its neighbor
during the comparison step. When a node (a node failure is
assumed to be equivalent to the failure of all links associated
with it) or link failure is detected, any of the following actions
can be taken.

1) The fault can be ignored during the integration process.
After integration is complete and abstract estimates have
been sent to the upper level of the MBD, the node which

rooted at X does not become unusable-only the faulty node
is unusable. Moreover, X is identified as a faulty node during
the comparison step because its abstract estimate (which it
sends to its neighbors) may not contain the physical value.

If action 2) is taken by the neighbor of the faulty node,
then it must reroute the abstract estimate received, around the
faulty node to the destination. This means that the destination
node must wait for more time to receive the abstract estimate,
because additional hops may be required for rerouting the mes-
sage. This requires that the value of y (maximum difference in
time that a node can tolerate between intervals that can be inte-
grated-please see the next section on clock synchronization)
be increased to maintain the “near synchronous” behavior of
the sensor network. Note that by increasing the value of y, the
network would tolerate single node/link fault but the process
of sensor integration would be slowed down. Samantham and
Pradhan [8] mention that four additional hops are enough to
avoid a single node fault in a binary deBruijn network. Since
the nodes in every level (except the top level) in the MBD
are arranged in a binary deBruijn network, the value of y will
have to be increased by four time units.

In the remaining part of this section, we show one way of
avoiding a single node fault using exactly four hops, when
routing in any level of the MBD except the topmost level. Let

be the destination node. Application of the PATH.l algorithm
yields the following path:

S k - l s k - 2 . . . slso be the source node and d k - l d k - 2 . . . dido

(z = 0) s k - l S k - 2 ” ’ s 1 s o (source)
(2 = 1) S k - 2 S k _ g . ’ . S o d k - i

(2 = 2) S k - g * . ’ S O d k - i d k - 2

(z = k) d k - l d k - 2 ’ . .dido
Assume that either node i 2 or the link between i l and 22

has failed. We now show an alternative route (reroute) between
i l (rerouting source) and i3 (rerouting destination) that takes
only four additional hops.

(destination)

IYENGAR et al.: DISTRIBUTED SENSOR INTEGRATION PROBLEM 181

I I I

Final output Final output F i n a l output
estimate estimate e s t ima t e

Fig. 9. Integration step.

The proof is by induction. The base case for n = 3 is
straightforward to prove by enumeration (see Fig. 9). Consider
p intervals and assume that the lemma holds for less than p
intervals. Consider the first (p - 1) of the p sorted intervals.
Since we know that there can be at most one fault, either all the
(p - 1) intervals intersect or exactly (p - 2) intervals intersect.

Case I : Exactly (p - 2) intervals intersect (there is one fault
among the (p - 1) intervals): by the induction hypothesis, there
are at most two (p - 2) interval intersections-A (A l , A ,) and
B (Bl, ElTL); let Al < Bl. Further, A and B are non-intersecting
(Le., A , < Bl)-otherwise they would have formed a (p - 1)
intersecting interval. Since there can be one fault at most, the
pth interval has to be correct and has to intersect with B giving
rise to one (p - 1) intersecting interval.

Case 2: All (p - 1) intervals intersect: Let the intersecting
interval be C (Cl. C,). By the induction hypothesis there are
at most two (p - 2) interval intersections D (Dl. D,) and E
(El, E,) and these overlap-Le., Dl 5 El. El < D,. Further,
since C is the intersection of D and E, C, = min (0,. E,)
and Cl = El = (p - l) ~ , the lower bound of the (p - 1)st
interval. Now the pth interval can intersect with some or all
the intervals C, D, and E. Several cases arise:

Case 2a): The pth interval (p l , p,) intersects C-the
p intersecting interval is then (p l . min (p,. C,)), i.e.,
(p l , min (D,, E,, p ,)) . The pth interval could intersect either
D (if D, > E,) or E (if E, > D,) but not both to form
another (p - 1) intersection.

Case 2b): The pth interval (pa, p,) does not intersect C.
Hence, pl > min (D,, E,). The pth interval intersects either
D (if D, > E,) or E (if E, > 0,) but not both both to form
a (p - 1) intersection.
The (p - 1) intersecting intervals arising from Case 2 are the
interval C and at most one more from Cases 2(a) and 2(b).
The lemma then follows from the above cases.

A direct consequence of Lemma 3 is the following theorem.
Using the theorem, the search for a faulty node is narrowed
down to at most nodes for each fault.

Theorem I: Given a set of n intervals containing at most
one faulty interval,

1) there is no faulty interval if there is no 71 - 1-interval
intersection,

2) the interval not intersecting with an n - 1-interval
intersection is faulty if there is exactly one R - 1-interval
intersection, and

3) there are two potentially faulty intervals if there are two
n - 1-interval intersections one of which is incorrect.

In case 3), the two potentially faulty nodes can be traced by
taking the set difference of the interval names that belong to
each (n - 1) interval intersection.

I
5 - F3ne.l OUtDut

estimate

Fig 10 Comparison step

We now describe the information integration process. For
convenience, we will refer to the information integration
of abstract estimates between distinct levels as “integration”
and refer to the information integration within a level as
“comparison.”

Abstract estimates move upward from the leaf nodes to the
commander nodes. Every non-leaf node of the network com-
bines the abstract estimates of its two children and the local
sensor (sensor associated with this PE) to arrive at a new ab-
stract estimate (AE’) . This step is called the “integration” step.

In the integration step, we assume that at most one of the
three (local sensor and 2 children) received abstract sensor
estimates is incorrect. The new abstract estimate is found from
the three cases (refer Fig. 9) that could arise (Theorem 1). If
there are two 2 interval intersections, then the smallest interval
containing these intervals forms the new abstract estimate. It
can also be shown [lo] that this new estimate is at most as
wide as one of the input abstract estimates.

Next, each node sends its AEz to all its neighbors. When
a node receives AE‘s from its neighbors, it combines them
to arrive at a new estimate A E f . This step is called the
“comparison” step and the algorithm used to combine the
estimates is similar to the one described for the integration
step. In this step, however, a node combines 3, 4, or 5
estimates depending on the number of its neighbors (2, 3 , or
4 respectively).

Since the MBD can tolerate at most one fault (node or link)
per level, one of the estimates received from a neighbor could
be incorrect. Hence, when a node receives z (z = 3, 4 or
5) intervals in the comparison step, it chooses the smallest
interval containing all (which is at most two as shown in
lemma 3) the a - 1-interval intersections as the output. The
width of this abstract estimate is again at most as wide as one
of the input correct intervals.

Fig. 10 shows the comparison process in a node of
the network.

If there are two z - I-interval intersections in the comparison
step, then we know that there exists an incorrect interval.
Jdentifying the faulty node which sent this incorrect interval
requires the diagnostic testing of at most two nodes as we
showed in Theorem 1 . Once a node has been identified as
faulty, appropriate action can be taken so as to either “repair”
the faulty node or replace it and notify the parent and children
of the faulty node. In this paper, we are not concerned with
the problems of identifying the cause of faulty behavior and
attempting to rectify that cause.

The following steps summarize the process of information
integration:

Step I: Receive abstract estimates from children and

1 80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 2, FEBRUARY 1994

000

1 00 110

Fig. 7. PATH.l route between 011 and 101.

111

d z Z k - 1 i k - 2 . . . i l (Route 1) OR i k - 2 i k - 3 . . . i l i O d k - r - 1

(Route 2).

next node.
3) Increment the counter z and route the message to the

Fig. 7 shows a path from node 011 to node 101 in a
DG(2, 3) network using Route 2 of the PATH.1 algorithm.

PATH.2 Algorithm

PATH.2 algorithm routes the message along the shortest
path between the source and destination nodes. To find
the shortest path, we treat the node addresses as binary
strings and use a string matching algorithm described in
[I].

Find the largest x such that s , - 1 s z - 2 . ” s 1 s 0 =

s k - y = d y - 1 d y - 2 . . . d l d 0 . We can compute x and y in
O (k) , Le., O(1ogN) time. The following three cases arise
depending on the relationship between x and y.

Case 1: (x > y)-the shortest path is given by the follow-
ing sequence of nodes:

(z = 0) sk-1.!?&.2. . . slso

d k - l d k - 2 . . . d k - , , and the largest y such that S k - l S k - 2 . . .

(source)
(Z = 1) S k - z S k - 3SOdk-z- l

(Z = 2) s k - 3 . . . S O d k - , - l d k - , - 2

(2 = k - y) d k - l d k - 2 . . . s k - y + 2 S k - y + l (destination)
The destination is reached after (I ” - y) steps.

Case 3: (x = y)--choose either of the above routings to
obtain the shortest path.

For this algorithm, the routing tag counter is initiated to
k - x o r k - y .

Fig. 8 shows the shortest path between nodes 011 and 101
in a DG(2, 3) network using the PATH.2 algorithm. In this
case x = 1 and y = 2; hence, the shortest path is of length 1.
Using the PATH.1 algorithm yields a path length of 3.

The following steps describe the PATH.2 algorithm (as
executed by node i).

In practice, both of the algorithms would be implemented
using shift/and complement operations at each step. this would

000

100 110

Fig. 8. PATH.2 route between 011 and 101.

111

obviate the need for the routing tag counter thus reducing the
message header requirements; further, an expensive increment
operation is replaced by a shiftlcomplement operation. Note
that the value of x and y need not be computed by all nodes
in the path. Instead, the value of z or y can be transmitted in
the message header.

Inter-Level Routing: Let the source (S) and destination (D)
nodes be at levels L and L - X respectively. At the source
the inter-level routing (IRB) bit is set to “1” to indicate
that the source and destination nodes are in different levels.
Further, when the IRB bit is set, the routing tag counter is not
incremented in order to maintain a proper value of the counter
for intra-level routing following the inter-level routing.

The source node S first routes the message to its parent
str(S). This procedure is repeated recursively till the message
is received by a node at the same level as the destination
node D. The IRB bit is reset to “0” now, and the source
address is replaced by the address of the node that received
the message. The message can be then routed to the destination
using PATH.1 or PATH.2 algorithm.

When the destination is at a higher level than the source,
routing can be similarly done by using upp() to generate the
address of the next node in the path till the message reaches
the same level as that of the destination node. The message
can then be routed using PATH.l or PATH.2 algorithm. Note
that messages in the MBD are usually routed from higher to
lower levels only since the final integration is done by the
commands.

D. Information Integration

In this section, we describe the process of information
integration in the MBD. The idea behind the integration is to
a) keep the communication requirements small-this is done
by communicating the abstract estimate as a single interval
and b) maintain accuracy by ensuring that the physical values
of interest is always contained in the abstract estimate.

Since the deBruijn network has a connectivity of 2, the
MBD can tolerate at most one node fault or link fault per
level (except at the topmost level which is fully connected).
We first prove some results related to fault tolerance when
abstract estimates (or intervals) are to be integrated in the
presence of faults in the network.

Lemma 3: Consider n (n 2 3) intervals of which at most
one can be faulty. Then there can be at most two (n - 1)
distinct interval intersections among these n intervals.

Proof: Without loss of generality, assume that the n
intervals (i t , iu) (1 5 i 5 n) are sorted in increasing order
by their lower bounds.

‘ 1

IYENGAR et 01. : DISTRIBUTED SENSOR INTEGRATION PROBLEM I 83

Source
Type IRB Address

Destination Routing Source Destination

Address Co:ftetzr A ~ ~ ~ ~ s s
Address RC RRB

(1 3)

Fig. 12. Type 2 routing tag

000 11

Fig. 13. Fault tolerant routing between 001 and 1 I O when 01 1 is faulty.

When il receives a message (consisting of the abstract
estimate and the Type 1 tag), it appends four fields to the
Type 1 tag which enable rerouting of the message-(1) source
address (il), (2) destination address (i3), (3) reroute counter
(RC), and (4) rerouting bit (RRB). We shall refer to the tag,
formed by appending reroute fields to the Type 1 tag, as Type
2 tag. Figure 12 shows a Type 2 tag. To initiate rerouting, il
increments z and sets RRB="l". When RRB="l", a node
does not increment z ; instead it uses RC to compute the
address of the next node in the reroute. When the message
reaches i3, i3 removes the reroute fields from the tag, and
increments z . Routing from 23 then proceeds normally using
PATH. 1 or PATH.2 algorithms.

The alternative route between il and i s is shown here:
(z = m - 1) S k - m S k - m - 1 ' ' ' SOdk-1 ' ' . d&m+J
(Z 1 VL) Sk-m-1Sk-m-2."SOdk-l..'dk-m+ldk--n
(2 = m) S k - m - 2 S k - m - 3 ' . ' SOdk-1 . ' '

-

dk-m+ldk-mdk-m- l -
(z = m) d~-m-lSk--m-~".SOdk-~'..dk-nl+ldk-m
(z = VL) d k - m d k - m - l . . . sodk-1 . . . dk-m+l

(2 = m ~) dk-m-1Sk-m-2...SOdk-l...dk--m+idk-m
(z = m f 1) S k - m - 2 S k - m - 3 ' . ' s o d k - 1 ' . '

d k - m + l d k - m d k - m - l .

The above route takes 6 steps-only 4 more than the normal
route between il and 23. Figure 13 shows fault tolerant routing
in a DG (2 , 3) (level 3) between nodes 001 and 110 when the
node 01 1 is faulty. This alternative route can be chosen when
a faulty node is encountered in the path to the destination
node. Hence, the routing algorithms given earlier can be easily
adapted to take the alternative path in case of faults. This
rerouting algorithm is also more adaptive to faults than the
one presented in [8] since our algorithm does not require that
the presence of a fault be known to the source node as the
other algorithm does.

Finally, since the network can sustain one node or link
fault at every level, the MBD network with 1 levels and
N = 2(2l - 1) nodes can sustain 1, i.e., approximately log N ,
node or link faults.

111. CLOCK SYNCHRONIZATION ISSUES

"close to each other" must be integrated if meaningful results
are desired. This is achieved by time-stamping each estimate.
The condition under which two estimates may be integrated
is given at the end of the next subsection. In a distributed
environment such as ours, there is no central synchronized
clock which regulates the activities of each node. Instead, each
node is under the control of its own clock. Since the sensor
responds to real-time events, it is convenient for the clock to
provide the real, i.e., physical time. Further, since the estimates
from different sensors have to be integrated, it is necessary for
the time provided by the clocks of the sensors to be "close
to each other." The clock at each node may not be accurate
because of a variety of reasons such as clock shift, change in
temperature, etc. Each clock must therefore synchronize with a
more accurate clock. We assume the existence of a central time
server which when requested for the time at t , provides the
time C(t). The PE's in our DSN spatially lie within tens of feet
from each other, hence the existence of a single time server
for the clocks on all the PE's can be assumed. The central
time server itself periodically synchronizes with a universal
time server, which is always accurate and lies outside our
environment.

The following definitions are used.

6

ir

K

(7

S Channel transmission delay.
E

y

Maximum allowable deviation in time of a clock on
a PE.
Maximum allowable deviation in time of a clock on
the central time server.
Maximum allowable drift rate in time of a clock on
a PE.
Maximum allowable drift rate of the clock in the
central time server.

Delay in receiving the message sent by the central
time server to any PE.
Maximum difference in time that a node can tolerate
between intervals that can be integrated.

We use the clock model described in [111 to synchronize
the clocks in the MBD. We summarize the basic results of the
model in the next two subsections.

A. Clock Behavior and Synchronization

Let Cp(t) be the time provided by the clock on PE p at
time t (t is the time provided by a universal time server).
We assume that the clocks run continuously rather than in
discrete "ticks." Hence, (dC,(t))/dt denotes the rate at which
the clock is running at time t . We also assume that this rate
is nonnegative; hence, the time on the clocks monotonically
increase.

We now state the conditions on the clocks for proper
synchronization.

Clock Condition 1: The deviation in time of each clock is
bounded, i.e., for PE p , there exists F, << 1 and a << 1 such

So far we have assumed that any two abstract estimates
can be integrated. In reality, since the sensor outputs typically

that

change as a function of time, only estimates that are temporally It - CP(t)l I t p (2a)

184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 2, FEBRUARY 1994

It - C(t>l 5 a. (2b)

Clock Condition 2: Between synchronizations, the drift
rate of the clock is bounded, i.e., for PE p , there exists
tcp << 1 and 0 << 1 such that

to any PE. Also, let T: and T: be the periods corresponding to
T, and T, as observed by the central time server. The bounds
on these observed periods can be shown to be [111:

Theorem 3: The time period as observed by the central time
server between synchronizations of the central time server is

CZock Condition 3: The clock on each of the PE’s and the
central time server advance monotonically.

For simplicity, we assume that tp and I E ~ is the same for
all PE’s, i.e., cp = t and I E ~ = K . From Clock Condition 1
we have,

Synchronizution Bound: If p and q are two PE’s then

ICp(t) - Cq(t)I 5 % . (4)

Let Smin and S,,, be the minimum and maximum values of
delay for a message sent by a PE to its neighbor. Let y be the
maximum difference in time that a node can tolerate between
intervals that can be integrated. Note that the value of y will
depend on the longest path between leaf nodes and commander
nodes, which is equal to L in a MBD with L levels.

The following lemma and theorem state precisely the con-
ditions for combining abstract sensor estimates which are
temporally “close to each other.” The discussion in this section
follows closely the discussion presented in [111. We therefore
state all the results without proof. The interested reader is
referred to [11].

Lemma 4: Let a message be received by PE p at CP(t).
Then this message was sent in the interval (Cp(t) - 2c -

The time stamp of an abstract estimate may not belong
to the interval given above if the channel is faulty. The
following theorem gives the condition under which estimates
are “temporally close” and may be integrated.

Theorem 2: Let the three proper abstract sensor estimates
11, 1, and 13 be received by PE p at times

Smaxl C p (t) + 2~ - bmin).

C p (t l) < Cp(t2) < CP(t3)

respectively. Then I, (i = 2, 3) can be integrated, iff

(C p (t i) - C p (t 1) + 46 + amax - Smin) I 7.

Since the clocks on the central time server and each of the
PE’s drift, they have to be periodically reset. We now state a
bound on the time period between synchronizations. Let T, be
the time period of synchronizations of the central time server,
and let Tc be the time period between synchronizations of the
PE p.

The central time server synchronizes itself every T, seconds
with a perfect universal time server which exists outside
the environment of the DSN. The central time server also
synchronizes the clock on a PE every Tc seconds.

Let Jmin and [,,, be the minimum and maximum of the
delay in receiving the message sent by the central time server

bounded by

Theorem 4: The time period as observed by the central
time server between synchronizations of the clock on a PE
is bounded by

Ti < - 2a - (L a x - J m i n)
- a. c -

IE

IV. COMPARISON WITH COMMERCIAL SENSOR NETWORKS

In previous sections we described the topological and fault-
tolerant properties of the MBD. We also saw that routing in
the MBD is very simple. Nearly all sensor networks used in
process control industries now are based on the bus or ring
systems. With the need for large scale DSN’s (combined with
the need for high sampling rates), the common data path in the
bus and the high diameterAow connectivity of the ring make
them both unsuitable to support the communication required
among the nodes of the DSN. Further, since data fusion is
by nature hierarchical, a hierarchical interconnection network
would be most suitable for such a function.

Table I compares the topological, routing and fault-tolerant
properties of the MBD with the bus and ring networks. It can
be seen that the MBD is a good alternative to the bus and
ring networks.

V. CONCLUSION

The effective use of multiple sensor systems requires the
solution of various problems relating to sensor models, the
architecture of the sensor network, the integration of infor-
mation at each node of the network, the cost of information
transmission, and the fault tolerance of the network. The
integration of information in real time requires the clocks at
each of the nodes be synchronized. Synchronization of clocks
is a nontrivial task in such distributed sensor networks. In an
earlier paper [111, some issues related to the architecture of
DSN’s, information integration, and clock synchronization had
been addressed. This paper extends the study by considering a
more sophisticated architecture for DSN’s which has a number
of advantages including the ability to tolerate single node or
link faults at each level.

Since our focus has been primarily on computational issues,
we have chosen to represent sensor output information by
Marzullo’s simple and elegant model which is based on
real valued intervals. We have also used a relatively simple
information integration algorithm. We are aware that sensor
modeling is itself a very detailed area of study [7] and that
very sophisticated methods exist for information integration.
We have also assumed that the output of each sensor is a
physical value. The above discussion and results easily extend

‘ 1

IYENGAR el al.: DISTRIBUTED SENSOR INTEGRATION PROBLEM 185

TABLE I

Bus Ring MBD*

Communication O (N) O (N) O(logN)
O (N) O(1ogN) Diameter OP)

Degree 1 2
Routing Simple Simple Simple
Fault-tolerance 1 2 O(logN)t
Cost (number of links) 1 N - 1 < 3.5N

7

BMD* multilevel de3nrjin network.
t Assuming of one fault per level.

to the case when the output of a sensor is a vector rather than
a single value.

This study could be extended in several directions. A
Straightforward extension is to assign weights to the abstract
estimates produced as a function of its level in the hierarchy.
We also plan to investigate more sophisticated fault tolerant
strategies for the deBruijn network than the scheme presented
here. A future goal of our project is to investigate the compu-
tation and communication requirements of more sophisticated
integration algorithms executing on large scale DSN’s.

ACKNOWLEDGMENT
The authors would like to thank Dr. D. K. Pradhan for his

discussions of the paper and the referees for their comments.
The authors also like to thank Dr. Madan for his comments
on this paper.

[41

151

r71

161

[81

r91

1121

1131

REFERENCES

D.E. Knuth, J. H. Moms, and V.R. Pratt, “Fast pattem matching in
strings,” SIAM J. Computing, vol. 6, pp. 323-350, 1977.
R. Wesson, et al., “Network structures for distributed situation assess-
ment,” IEEE Tram. Syst., Man, Cybem, pp. 5-23, Jan. 1981.
D. K. Pradhan, “Interconnection topologies for fault-tolerant parallel and
distributed architectures,” in P m . 10th Int. Con5 Parallel Processing,

D. K. Pradhan and S. M. Reddy, “A fault-tolerant communication archi-
tecture for distributed systems,’’ ZEEE Trans. Comput, vol. c-3 l , no. 9,
1982.
D. K. Pradhan, “Dynamically restructurable fault-tolerant processor net-
work architecture,” IEEE Trans. Comput., vol. c-34, May 1985.
A.-H. Esfahanian and S. L. Hakimi, “Fault-tolerant routing in deBruijn
communication networks,” IEEE Trans. Comput., vol. c-34, 1985.
H. F. Durrant-Whyte, “Sensor models and multisensor integration,” Int.
J. Robot. Res., vol. 7, no. 6, 1988.
M.R. Samantham and D.K. F’radhan, “The deBruijn multiprocessor
network A versatile parallel processing and sorting network for VLSI,”
IEEE Trans. Comput., vol. 38, 1989.
R.C. Luo and M.G. Kay, “Multisensor integration and fusion in
intelligent systems,” ZEEE Trans. Syst., Man, Cybem., vol. 19, pp.

K. Marzullo, “Tolerating failures of continuous-valued sensors,” ACM
Trans, Comput. Syst., vol. 4, pp. 284-304, Nov. 1990.
D.N. Jayasimha, S. S. Iyengar, and R. L. Kashyap, “Information
integration and synchronization in distributed sensor networks,” IEEE
Trans. Sysr., Man, Cybem., vol. 21, pp. 1032-1043, Sept. 1991.
L. Prasad, S. S. Iyengar, R. L. Kashyap, and R.N. Madan, “Functional
characterization of sensor integration in Distributed Sensor Networks,”
IEEE Trans., SMC, vol. 21, Sept./Oct. 1991.
D.K. Pradhan, “Fault-tolerant VLSI architectures based on deBruijn

Aug. 1981, pp. 238-242.

901-927, Sept./Oct., 1989.

S. Sitharama Iyengar (M8WM90)is the chair-
man of the Comljuter Science Department and Pro-
fessor of Computer Science at Louisiana State Uni-
versity. He has directed LSU’s Robotics Research
Laboratory since its inception in 1986. He has been
wtively involved with research in high-performance
algorithms and data structures since receiving the
F%.D. degree in 1974, and has directed more than
18 Ph.D. dissertations at LSU. He has served as
principal investigator on research projects supported
by the Office of Naval Research, the National Aero-

nautics and Space Adminishation, the National Science FoundatiodLaser
Program, the Califomia Institute of Technology’s Jet Propulsibn Laboratoj,
the Department of Navy-NORDA, the Department of Energy (through Oak
Ridge National Laboratory, Tennessee), the LEQFS-Board of Regents, and
Apple Computers.

He has edited a two-volume tutorial on autonomous Mobile Robots and
has edited two other books and more than 15U publications-including 90
archival journal papers in areas of high-performance parallel and distributed
algorithms and data structure for image processing and pattem recognition,
autonomous navigation, and distributed sehsor networks. Iyengar was a
visiting professor (fellow) at JPL, the Oak Ridge National Laboratory, and
the Indian Institute of Science. He is also an Association for Computing
Machinery national lecturer, a series editor for Neuro Computing of Complex
Systems, and area editor for the Journal of Computer Scieqce and Information.
He has served as guest editor for the E E E TRANSACI’IOP~S ow SOFIWARE
ENGINEERING (1988); Computer magazine (1989); the IEEE TRANSACTIONS ON
SYSTEM. MAN, AND CYBERNETICS: the E E E TRANSACI’IONS ON KNOWLJXJGE AND
DATA ENGI“G; and the Joumal of Computeeh and Electrical Engineering.
Dr. Iyengar was awarded the Phi Delta Kappa Research Award of Distinc-

tion at LSU in 1989, won the Best Teacher Award in 1978, and received the
Williams Evans Fellowship from the University of Otago, New Zealand, in
1991.

D. N. Jay- ”91) received the bachelor’s de-
gree in electronics engineering from the University
Visvesvaraya College of Engineering, Bangalore,
India, the master’s degree in computer science from
the Indian Institute of Science, Bangalm, India, and
the Ph.D. in computer science from the University
of Jllinois, Urbana.

He is presently working at NASA Lewis Research
Center as a Visiting Scientist. Since 1988 he has
been an Assistant Professor at the Department of
Computer and Information Science, The Ohio State

University, Columbus, OH. His research interests are in communication and
synchronization aspects of parallel computing, parallel architectures, and
distributed sensor networks.

He is a member of ACM and Sigma Xi.

Deepak S. Nadig was bom in Bangalore, India, in
1968. He received the B.Tech degree in Electrical
Engineering from Indian Institute of Technology,
Bombay, India in 1989.

From 1989 to 1991, he worked for Tata Con-
sultancy Services, Madras, India, where he was a
member of the Building Blocks project for IBM
Research Labs, Germany. Since 1991 he has been
a graduate student in the Department of Computer
Science and a research assistant in the Robotics
Research Laboratory at Louisiana State University.

graphs (Galileo in the Mid Nineties),” DIMACS Series in Discrete
Mathematics and Theoretical Comput. Sci., vol. 5, 1991.

His research interests include distributed systems, fault-tolerant computing,
and computer networks.

